66 research outputs found

    Q-Class Authentication System for Double Arbiter PUF

    Get PDF
    Physically Unclonable Function (PUF) is a cryptographic primitive that is based on physical property of each entity or Integrated Circuit (IC) chip. It is expected that PUF be used in security applications such as ID generation and authentication. Some responses from PUF are unreliable, and they are usually discarded. In this paper, we propose a new PUF-based authentication system that exploits information of unreliable responses. In the proposed method, each response is categorized into multiple classes by its unreliability evaluated by feeding the same challenges several times. This authentication system is named Q-class authentication, where Q is the number of classes. We perform experiments assuming a challenge-response authentication system with a certain threshold of errors. Considering 4-class separation for 4-1 Double Arbiter PUF, it is figured out that the advantage of a legitimate prover against a clone is improved form 24% to 36% in terms of success rate. In other words, it is possible to improve the tolerance of machine-learning attack by using unreliable information that was previously regarded disadvantageous to authentication systems

    Efficient Pipelining for Modular Multiplication Architectures in Prime Fields

    Get PDF
    This paper presents a pipelined architecture of a modular Montgomery multiplier, which is suitable to be used in public key coprocessors. Starting from a baseline implementation of the Montgomery algorithm, a more compact pipelined version is derived. The design makes use of 16bit integer multiplication blocks that are available on recently manufactured FPGAs. The critical path is optimized by omitting the exact computation of intermediate results in the Montgomery algorithm using a 6-2 carry-save notation. This results in a high-speed architecture, which outperforms previously designed Montgomery multipliers. Because a very popular application of Montgomery multiplication is public key cryptography, we compare our implementation to the state-of-the-art in Montgomery multipliers on the basis of performance results for 1024-bit RSA

    An Information Theoretic Perspective on the Differential Fault Analysis against AES

    Get PDF
    Differential Fault Analysis against AES has been actively studied these years. Based on similar assumptions of the fault injection, different DFA attacks against AES have been proposed. However, it is difficult to understand how different attack results are obtained for the same fault injection. It is also difficult to understand the relationship between similar assumptions of fault injection and the corresponding attack results. This paper reviews the previous DFA attacks against AES based on the information theory, and gives a general and easy understanding of DFA attacks against AES. We managed to apply the analysis on DFA attacks on AES-192 and AES-256, and we propose the attack procedures to reach the theoretically minimal number of fault injections

    Evaluation of Hardware Performance for the SHA-3 Candidates Using SASEBO-GII

    Get PDF
    As a result of extensive analyses on cryptographic hash functions, NIST started an open competition for selecting a new standard hash function SHA-3. One important aspect of this competition is in evaluating hardware implementations and in collecting much attention of researchers in this area. For a fair comparison of the hardware performance, we propose an evaluation platform, a hardware design strategy, and evaluation criteria that must be consistent for all SHA-3 candidates. First, we define specifications of interface for the SASEBO-GII platform that are suitable for evaluating the performance in real-life hash applications, while one can also evaluate the performance of the SHA-3 core function that has an ideal interface. Second, we discuss the design strategy for high-throughput hardware implementations. Lastly, we explain the evaluation criteria to compare the cost and speed performance of eight SHA-3 candidates out of fourteen

    Clockwise Collision Analysis -- Overlooked Side-Channel Leakage Inside Your Measurements

    Get PDF
    This paper presents a new side-channel attack technique called {\it clockwise collision} analysis. For the cryptographic implementations using synchronous digital circuit with a loop architecture, signal transitions as well as the side-channel leakage relates to not only the input data in the current cycle, but also the status in one-cycle before. The clockwise collision utilizes the fact that little computation is required in the second clock cycle when the inputs for two consecutive clock cycles are the same. In contrast, the previously known {\it computational collision} utilizes the fact that the computation of the same input value leads to similar side-channel leakage. By experimentation, we demonstrate the feasibility and vulnerability for this novel clockwise collision analysis both by injecting faults and by analyzing the power consumption

    Robust RFID Authentication Protocol with Formal Proof and Its Feasibility

    Get PDF
    The proloferation of RFID tags enhances everyday activities, such as by letting us reference the price, origin and circulation route of specific goods. On the other hand, this lecel of traceability gives rise to new privacy issues and the topic of developing cryptographic protocols for RFID- tags is garnering much attention. A large amount of research has been conducted in this area. In this paper, we reconsider the security model of RFID- authentication with a man-in-the-middle adversary and communication fault. We define model and security proofs via a game-based approach makes our security models compatible with formal security analysis tools. We show that an RFID authentication protocol is robust against the above attacks, and then provide game-based (hand-written) proofs and their erification by using CryptoVerif

    A New Arbiter PUF for Enhancing Unpredictability on FPGA

    Get PDF
    In general, conventional Arbiter-based Physically Unclonable Functions (PUFs) generate responses with low unpredictability. The N-XOR Arbiter PUF, proposed in 2007, is a well-known technique for improving this unpredictability. In this paper, we propose a novel design for Arbiter PUF, called Double Arbiter PUF, to enhance the unpredictability on field programmable gate arrays (FPGAs), and we compare our design to conventional N-XOR Arbiter PUFs. One metric for judging the unpredictability of responses is to measure their tolerance to machine-learning attacks. Although our previous work showed the superiority of Double Arbiter PUFs regarding unpredictability, its details were not clarified. We evaluate the dependency on the number of training samples for machine learning, and we discuss the reason why Double Arbiter PUFs are more tolerant than the N-XOR Arbiter PUFs by evaluating intrachip variation. Further, the conventional Arbiter PUFs and proposed Double Arbiter PUFs are evaluated according to other metrics, namely, their uniqueness, randomness, and steadiness. We demonstrate that 3-1 Double Arbiter PUF archives the best performance overall

    Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    Get PDF
    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function

    Efficient Differential Fault Analysis for AES

    Get PDF
    This paper proposes improved post analysis methods for Differential Fault Analysis (DFA) against AES. In detail, we propose three techniques to improve the attack efficiency as 1) combining previous DFA methods, 2) performing a divide-and-conquer attack by considering the AES key-schedule structure, and 3) taking the linearity of the MixColumns operation into account. As a result, the expectation of the analysis time in the previous work can be reduced to about one sixteenth. Notice that these improvements are based on the detailed analysis of the previous DFA methods and the calculation time and memory cost in practical implementations. Moreover, the proposed techniques can be widely applied to DFA attacks under different assumptions

    Abstraction Model of Probing and DFA Attacks on Block Ciphers

    Get PDF
    A thread of physical attacks that try to obtain secret information from cryptographic modules has been of academic and practical interest. One of the concerns is determining its efficiency, e.g., the number of attack trials to recover the secret key. However, the accurate estimation of the attack efficiency is generally expensive because of the complexity of the physical attack on a cryptographic algorithm. Based on this background, in this study, we propose a new abstraction model for evaluating the attack efficiency of the probing and DFA attacks. The proposed model includes an abstracted attack target and attacker to determine the amount of leaked information obtained in a single attack trial. We can adapt the model flexibly to various attack scenarios and can get the attack efficiency quickly and precisely. In the probing attack on AES, the difference in the attack efficiency is only approximately 0.3% between the model and experimental values, whereas that of a previous model is approximately 16%. We also apply the probing attack on DES, and the results show that DES has a high resistance to the probing attack. Moreover, the proposed model works accurately also for the DFA attack on AES
    • …
    corecore